
groupnorm chronicles

latentCall145

April 2024

1 Introduction

Normalization is important because it smoothens out loss landscapes which
makes training easier. Image models often use batch normalization but some
other models like VQGAN (and VQGAN-based models like Stable Diffusion
1, 2, and SDXL) use group normalization (GN) because GN normalizes each
element within the batch separately, resulting in stable training even with small
batch sizes.

This writeup describes the GN forward + backward pass with a focus on
efficient GPU implementation on the backward pass. I got interested in this
project in the first place because mixed-precision convolutions work faster in
NHWC format (as opposed to NCHW which is PyTorch’s default). The problem
is that PyTorch’s GN GPU implementation doesn’t work for NHWC tensors, so
I added NHWC support to GN myself to get the NHWC convolution speedup1.

2 Forward Pass

Figure 1: Diagram showing values in image (shaded in blue) that are reduced to
one mean/variance during normalization. i drew this cube so many times while
coding

1Code here

1

https://github.com/BearNinja123/channels-last-groupnorm


Let the GN forward activation go as the following: X ∈ RN×H×W×C is the
input. In GN,X is reshaped to x ∈ RN×R×G×D (where R = HW and represents
the resolution dimension) since that better represents the dimension which is
being reduced in the normalization process (along theD and R dimension for x),
and thus x will be mentioned instead of X for the remainder of this description.
y is the output and is of same shape as x, γ ∈ RC is the weights, and β ∈ RC

is the biases. In a similar way to x, γ, β will be reshaped to RG×D.

µng =
1

RD

∑
r,d

xnrgd (1)

σng =

√
1

RD

∑
r,d

(xnrgd − µng)2 (2)

x̂nrgd =
xnrgd − µng

σng
(3)

ynrgd = γgdx̂nrgd + βgd (4)

3 Backward Pass

3.1 Chain Rule Refresher

To preface the backwards derivation, here’s a quick reminder of the chain rule:
For function f(x1(t), x2(t), ..., xn(t)) (note how t is involved in the computation
of multiple intermediate functions xi which then affects f),

∂f

∂t
=

∑
i

∂f

∂xi

∂xi

∂t

3.2 Weight Partials

The backwards derivation for the weight and bias is pretty straightforward.
Note that in the below equations, we are looping over n, r (instead of every ele-
ment of y) since a single element of γ or β affects the output of n×r elements of y:

∂f

∂γgd
=

∑
n,r

∂f

∂ynrgd

∂ynrgd
∂γgd

(5)

=
∑
n,r

∂f

∂ynrgd
x̂nrgd (6)

∂f

∂βgd
=

∑
n,r

∂f

∂ynrgd

∂ynrgd
∂βgd

(7)

=
∑
n,r

∂f

∂ynrgd
(8)

2



3.3 Activation Partials

The backwards derivation for the input is not as straightforward since nudging
any element xnrgd affects every element within its group (because the nudging
affects the mean/variance of the group), which in turn affects the output:

∂f

∂xnrgd
=

∑
r′,d′

∂f

∂ynr′gd′

∂ynr′gd′

∂x̂nr′gd′

∂x̂nr′gd′

∂xnrgd
(9)

=
∑
r′,d′

∂f

∂ynr′gd′
γgd′

∂x̂nr′gd′

∂xnrgd
(10)

Note that the only reason I’m using r′, d′ for the sums instead of r, d is
because r, d specifies the activation input whose partial I want to calculate.
We’re still summing through the R and D dimension, just under different labels.
Focusing on the partials for the normalized variable x̂, let’s first apply the
quotient rule:

∂x̂nr′gd′

∂xnrgd
=

1

σ2
ng

(σng
∂(xnr′gd′ − µng)

∂xnrgd
− (xnr′gd′ − µng)

∂σng

∂xnrgd
) (11)

=
1

σng
(
∂xnr′gd′

∂xnrgd
− ∂µng

∂xnrgd
)− 1

σ2
ng

((xnr′gd′ − µng)
∂σng

∂xnrgd
) (12)

=
1

σng
(δr′rδd′d −

∂µng

∂xnrgd
)− 1

σ2
ng

((xnr′gd′ − µng)
∂σng

∂xnrgd
) (13)

If you haven’t seen the δij symbol yet, it’s called the Kronecker delta and equals
1 if i = j, and 0 otherwise. Thus, δr′rδd′d equals 1 if (r′, d′) = (r, d) and 0

3



otherwise. Now let’s unpack the partials for the mean and standard deviation:

∂µng

∂xnrgd
=

1

RD
(14)

∂σng

∂xnrgd
=

1

2RDσng

∑
r′,d′

2(xnr′gd′ − µng)
∂(xnr′gd′ − µng)

∂xnrgd
(15)

=
1

RDσng

∑
r′,d′

(xnr′gd′ − µng)(
∂xnr′gd′

∂xnrgd
− ∂µng

∂xnrgd
) (16)

=
1

RDσng

∑
r′,d′

(xnr′gd′ − µng)(δr′rδd′d −
1

RD
) (17)

=
1

RDσng
((xnrgd − µng)−

1

RD

∑
r′,d′

(xnr′gd′ − µng)) (18)

=
1

RDσng
((xnrgd − µng)−

1

RD

∑
r′,d′

xnr′gd′ +
1

RD

∑
r′,d′

µng)) (19)

=
1

RDσng
((xnrgd − µng)− µng + µng)) (20)

=
xnrgd − µng

RDσng
(21)

We’re not going to write
∂σng

∂xnrgd
=

x̂nrgd

RD even though it’s mathematically

equivalent because we don’t want to store/load x̂ when performing the back-
ward pass on the GPU. Doing so wastes memory and would actually worsen
performance as loading/storing values in GPUs (specifically to global memory,
which is the GPU equivalent to RAM) is much slower than math operations.

Plugging the above partials to
∂x̂nr′gd′

∂xnrgd
:

∂x̂nr′gd′

∂xnrgd
=

1

σng
(δr′rδd′d −

∂µng

∂xnrgd
)− 1

σ2
ng

((xnr′gd′ − µng)
∂σng

∂xnrgd
) (22)

=
δr′rδd′d

σng
− 1

RDσng
− 1

RDσ3
ng

(xnr′gd′ − µng)(xnrgd − µng) (23)

And now plugging into ∂f
∂xnrgd

:

∂f

∂xnrgd
=

∑
r′,d′

∂f

∂ynr′gd′
γgd′

∂x̂nr′gd′

∂xnrgd
(24)

∂f

∂xnrgd
=

∑
r′,d′

∂f

∂ynr′gd′
γgd′(

δr′rδd′d

σng

− 1

RDσng
− 1

RDσ3
ng

(xnr′gd′ − µng)(xnrgd − µng)) (25)

4



∂f

∂xnrgd
=

∑
r′,d′

∂f

∂ynr′gd′
(
γgd′δr′rδd′d

σng

− γgd′

RDσng
− γgd′

RDσ3
ng

(xnr′gd′ − µng)(xnrgd − µng)) (26)

∂f

∂xnrgd
=

1

σng

∑
r′,d′

∂f

∂ynr′gd′
γgd′δr′rδd′d

+
∑
r′,d′

∂f

∂ynr′gd′
(− γgd′

RDσng
− γgd′

RDσ3
ng

(xnr′gd′ − µng)(xnrgd − µng)) (27)

∂f

∂xnrgd
=

γgd
σng

∂f

∂ynrgd

+
∑
r′,d′

∂f

∂ynr′gd′
(− γgd′

RDσng
− γgd′

RDσ3
ng

(xnr′gd′ − µng)(xnrgd − µng)) (28)

3.4 Optimizations

At this point, you can start implementing this on a GPU, but it’s going to be
relatively slow because each element in Equation 28’s sum takes an unnecessary
number of operations (RD elements * (3 subtractions and 5 products per ele-
ment) + (RD − 1) additions for the actual sum). To speed this sum up, let’s
factor out the terms in the loops as much as possible:

∂f

∂xnrgd
=

γgd
σng

∂f

∂ynrgd
− 1

RDσng

∑
r′,d′

∂f

∂ynr′gd′
γgd′

+
µng − xnrgd

RDσ3
ng

∑
r′,d′

∂f

∂ynr′gd′
γgd′(xnr′gd′ − µng)

(29)

∂f

∂xnrgd
=

γgd
σng

∂f

∂ynrgd
− 1

RDσng

∑
r′,d′

∂f

∂ynr′gd′
γgd′

+
µng − xnrgd

RDσ3
ng

∑
r′,d′

∂f

∂ynr′gd′
γgd′xnr′gd′

+
µng(xnrgd − µng)

RDσ3
ng

∑
r′,d′

∂f

∂ynr′gd′
γgd′

(30)

5



∂f

∂xnrgd
=

γgd
σng

∂f

∂ynrgd
+ (

µng(xnrgd − µng)

RDσ3
ng

− 1

RDσng
)
∑
r′,d′

∂f

∂ynr′gd′
γgd′

+
µng − xnrgd

RDσ3
ng

∑
r′,d′

∂f

∂ynr′gd′
γgd′xnr′gd′

(31)

∂f

∂xnrgd
=

γgd
σng

∂f

∂ynrgd
+ (

µng(xnrgd − µng)

RDσ3
ng

− 1

RDσng
)
∑
d′

γgd′

∑
r′

∂f

∂ynr′gd′

+
µng − xnrgd

RDσ3
ng

∑
d′

γgd′

∑
r′

∂f

∂ynr′gd′
xnr′gd′

(32)

Now the loops are really simple. The
∑

d′ γgd′
∑

r′
∂f

∂ynr′gd′
loops have D(R−

1) adds for the inner sum, then D mults, then (D − 1) adds for the outer sum
(so (RD − 1) adds and D mults total). The

∑
d′ γgd′

∑
r′

∂f
∂ynr′gd′

xnr′gd′ loops

have RD − 1 adds and RD +D mults total.
Even better, the inner loops can be reused for the weight partial calculation.

Let S
(y)
ngd =

∑
r

∂f
∂ynrgd

and S
(xy)
ngd =

∑
r

∂f
∂ynrgd

xnrgd. We can sub these sums in

Equation 6:

∂f

∂γgd
=

∑
n,r

∂f

∂ynrgd
x̂nrgd (33)

=
∑
n

∑
r

∂f

∂ynrgd

(xnrgd − µng)

σng
(34)

=
∑
n

1

σng

∑
r

∂f

∂ynrgd
(xnrgd − µng) (35)

=
∑
n

1

σng
(
∑
r

∂f

∂ynrgd
xnrgd − µng

∑
r

∂f

∂ynrgd
) (36)

∂f

∂γgd
=

∑
n

S
(xy)
ngd − µngS

(y)
ngd

σng
(37)

Doing the same for Equation 8:

∂f

∂βgd
=

∑
n,r

∂f

∂ynrgd
(38)

=
∑
n

∑
r

∂f

∂ynrgd
(39)

∂f

∂βgd
=

∑
n

S
(y)
ngd (40)

6



And because we haven’t done so yet, let’s also do Equation 32:

∂f

∂xnrgd
=

γgd
σng

∂f

∂ynrgd
+ (

µng(xnrgd − µng)

RDσ3
ng

− 1

RDσng
)
∑
d′

γgd′

∑
r′

∂f

∂ynr′gd′

+
µng − xnrgd

RDσ3
ng

∑
d′

γgd′

∑
r′

∂f

∂ynr′gd′
xnr′gd′

(41)

∂f

∂xnrgd
=

γgd
σng

∂f

∂ynrgd
+ (

µng(xnrgd − µng)

RDσ3
ng

− 1

RDσng
)
∑
d′

γgd′S
(y)
ngd′

+
µng − xnrgd

RDσ3
ng

∑
d′

γgd′S
(xy)
ngd′

(42)

There are a lot of terms in Equation 42 meaning lots of operations per
partial, which is bad because we have to run Equation 42 many times (NRGD
times, once for each element of x). By rearranging some terms, we can rewrite
Equation 42 in the form:

∂f

∂xnrgd
=

γgd
σng

∂f

∂ynrgd
+ c(1)xnrgd + c(2)

This’ll greatly reduce the number of operations per element. Here it is:

S(yγ)
ng =

∑
d′

γgd′S
(y)
ngd′ (43)

S(xyγ)
ng =

∑
d′

γgd′S
(xy)
ngd′ (44)

∂f

∂xnrgd
=

γgd
σng

∂f

∂ynrgd
+ (

µng(xnrgd − µng)

RDσ3
ng

− 1

RDσng
)
∑
d′

γgd′S(y)
ng

+
µng − xnrgd

RDσ3
ng

∑
d′

γgd′S(xy)
ng

(45)

∂f

∂xnrgd
=

γgd
σng

∂f

∂ynrgd
+ (

µngxnrgd

RDσ3
ng

−
µ2
ng

RDσ3
ng

− 1

RDσng
)S(yγ)

ng

+ (
µng

RDσ3
ng

− xnrgd

RDσ3
ng

)S(xyγ)
ng

(46)

7



∂f

∂xnrgd
=

γgd
σng

∂f

∂ynrgd
+

µngS
(yγ)
ng − S

(xyγ)
ng

RDσ3
ng

xnrgd

− (
µ2
ng

RDσ3
ng

+
1

RDσng
)S(yγ)

ng +
µng

RDσ3
ng

S(xyγ)
ng

(47)

∂f

∂xnrgd
=

γgd
σng

∂f

∂ynrgd
+

µngS
(yγ)
ng − S

(xyγ)
ng

RDσ3
ng

xnrgd

+
−µ2

ngS
(yγ)
ng + µngS

(xyγ)
ng

RDσ3
ng

− S
(yγ)
ng

RDσng

(48)

∂f

∂xnrgd
=

γgd
σng

∂f

∂ynrgd
+

µngS
(yγ)
ng − S

(xyγ)
ng

RDσ3
ng

xnrgd

− µng
(µngS

(yγ)
ng − S

(xyγ)
ng )

RDσ3
ng

− S
(yγ)
ng

RDσng

(49)

From here, you can see that c(1), c(2) have shape N ×G where:

c(1)ng =
µngS

(yγ)
ng − S

(xyγ)
ng

RDσ3
ng

(50)

c(2)ng = −µngc
(1)
ng − S

(yγ)
ng

RDσng
(51)

8



Putting it all together, here are the partials for the backward pass:

S
(y)
ngd =

∑
r

∂f

∂ynrgd
(52)

S
(xy)
ngd =

∑
r

∂f

∂ynrgd
xnrgd (53)

S(yγ)
ng =

∑
d′

γgd′S
(y)
ngd′ (54)

S(xyγ)
ng =

∑
d′

γgd′S
(xy)
ngd′ (55)

∂f

∂γgd
=

∑
n

S
(xy)
ngd − µngS

(y)
ngd

σng
(56)

∂f

∂βgd
=

∑
n

S
(y)
ngd (57)

c(1)ng =
µngS

(yγ)
ng − S

(xyγ)
ng

RDσ3
ng

(58)

c(2)ng = −µngc
(1)
ng − S

(yγ)
ng

RDσng
(59)

∂f

∂xnrgd
=

γgd
σng

∂f

∂ynrgd
+ c(1)ng xnrgd + c(2)ng (60)

4 Fusing Normalization with Activation

One more thing. A lot of models that GN (such as VQGAN-based models) use
an activation directly after the normalization. If you implement this with a GN
layer followed by an activation layer, values are stored in GPU global memory
after normalization, which are then re-loaded to run the activation layer.

As I stated earlier, loading/storing from GPU global memory is really slow,
so we can speed up normalization and activation by running both operations in
one layer; this technique is called operator fusion2. This removes the slow GPU
global memory transfer between layers. Operator fusion also saves memory as
ML libraries need to store intermediate activations for each layer to calculate
gradients, so fusing layers reduces the number of intermediate activations to
store.

For the forward pass, we add an activation function ϕ(x) to
ynrgd = γgdx̂nrgd + βgd, so ynrgd now becomes:

ynrgd = ϕ(γgdx̂nrgd + βgd) (61)

This is trivial to implement on a GPU. For the backward pass:

2Operator fusion is one of the most important features (if not THE most important feature)
of ML compilers like Triton or XLA.

9



∂f

∂xnrgd
=

∑
r′,d′

∂f

∂ynr′gd′

∂ynr′gd′

∂x̂nr′gd′

∂x̂nr′gd′

∂xnrgd
(62)

=
∑
r′,d′

∂f

∂ynr′gd′
ϕ′(γgd′ x̂nr′gd′ + βgd′)γgd′

∂x̂nr′gd′

∂xnrgd
(63)

Essentially, for every ∂f
∂ynrgd

term you see, you also multiply it with

ϕ′(γgdx̂nrgd + βgd), so Equations 52 - 60 become:

S
(y)
ngd =

∑
r

∂f

∂ynrgd
ϕ′(γgdx̂nrgd + βgd) (64)

S
(xy)
ngd =

∑
r

∂f

∂ynrgd
ϕ′(γgdx̂nrgd + βgd)xnrgd (65)

S(yγ)
ng =

∑
d′

γgd′S
(y)
ngd′ (66)

S(xyγ)
ng =

∑
d′

γgd′S
(xy)
ngd′ (67)

∂f

∂γgd
=

∑
n

S
(xy)
ngd − µngS

(y)
ngd

σng
(68)

∂f

∂βgd
=

∑
n

S
(y)
ngd (69)

c(1)ng =
µngS

(yγ)
ng − S

(xyγ)
ng

RDσ3
ng

(70)

c(2)ng = −µngc
(1)
ng − S

(yγ)
ng

RDσng
(71)

∂f

∂xnrgd
=

γgd
σng

∂f

∂ynrgd
ϕ′(γgdx̂nrgd + βgd) + c(1)ng xnrgd + c(2)ng (72)

10


	Introduction
	Forward Pass
	Backward Pass
	Chain Rule Refresher
	Weight Partials
	Activation Partials
	Optimizations

	Fusing Normalization with Activation

